
 1 

Scaled equation of state for supercooled water 

 in the mean-field approximation 

 

J. Kalova
1,2

, R. Mareš
3
, M.A. Anisimov

2
, and J.V. Sengers

2 

 
1
Institute of Mathematics and Biomathematics, University of South Bohemia, Branišovská 

31, CZ-37005 České Budějovice, Czech Republic. 
2
Institute for Physical Science and Technology and Department of Chemical and 

Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, 

U.S.A. 
3
Faculty of Mechanical Engineering, Department of Power System Engineering, 

University of West Bohemia in Pilsen, CZ-30614 Plzeň, Czech Republic. 

 

 

 

 

 

 

 

 

 

Technical Report 
prepared for the 

International Association for the Properties of Water and Steam 
(September 2011) 

 

 

 



 2 

Abstract 

 

In this technical report we show that the assumption of thermodynamic liquid-liquid 

critical behavior in supercooled water already in the mean-field approximation yields a 

physically plausible explanation for the anomalous temperature dependence observed 

experimentally for the isochoric heat capacity, the isothermal compressibility, and the 

thermal expansivity of supercooled water. 

 

 

1 Introduction 

 

 It has now been well established that the thermodynamic properties of H2O 

exhibit anomalous behavior upon supercooling [1-9]. A variety of explanations for the 

anomalous thermodynamic behavior of supercooled water have been proposed [10]. In 

this report we consider the existence of a liquid-liquid critical point [11-30] and its 

possible effects on the temperature dependence of the heat capacity, the isothermal 

compressibility, and the thermal expansivity of supercooled water. 

 

 The thermodynamic behavior of fluids near a critical point can be characterized 

in terms of two independent scaling fields, a “strong” field h1 (ordering field) and a 

“weak” scaling field h2, and one dependent scaling field h3 [31]. These scaling fields in 

turn are related to the physical fields like temperature, pressure, and chemical potential. 

The specific details of the relationships between the scaling fields and the physical fields 

determine the actual nature of the thermodynamic behavior observed near critical points 

[32]. The thermodynamic property 1  conjugate to the ordering field is called the order 

parameter of the critical phase transition. Near the vapor-liquid critical point this order 

parameter is related to the density. Near the liquid-liquid critical point in supercooled 

water the order parameter is related to the entropy, as first pointed out by Fuentevilla and 

Anisimov [33]. The applicability of scaled equations of state with the entropy as the order 

parameter for representing the anomalous thermodynamic behavior of supercooled water 

has been further investigated by Bertrand and Anisimov [34]. In this report we consider a 

scaled equation of state for supercooled water in the mean-field approximation, which 

neglects the effects of critical fluctuations on the thermodynamic behavior. The limitation 

is that a mean-field approximation cannot properly account for the actual singular 

asymptotic power-law behavior of thermodynamic properties with Ising-like critical 

exponents. However, mean-field equations for critical thermodynamic behavior of fluids 

are very simple and can be easily programmed. Moreover, mean-field theories may yield 

a qualitative physical representation of the thermodynamic behavior not asymptotically 

close to a critical point [35,36]. Actually, a complete thermodynamic theory is expected 

to require a crossover description from asymptotic singular critical behavior to non-

asymptotic mean-field critical behavior [35,36]. Hence, it is of interest to investigate to 

which extent a mean-field approximation can account for the observed anomalous 

increase of heat capacity, compressibility and thermal expansivity in supercooled water. 

 

This report is organized as follows. In Section 2 we formulate a thermodynamic 

model based on the assumption of the presence of a liquid-liquid critical point in 
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supercooled water. Specifically, in Section 2.1 we introduce the concepts of scaling 

fields, scaling densities, and scaling susceptibilities. In Section 2.2 we show how these 

concepts can be applied to supercooled water. In Section 2.3 we implement the 

theoretical model in the so-called mean-field approximation. In Section 3 we provide a 

comparison of the theoretical model with experimental data for the isochoric heat 

capacity, the isothermal compressibility, and the thermal expansivity. We conclude that 

an equation of state based on the existence of a liquid-liquid critical point already yields 

in the mean-field approximation a plausible explanation for the anomalous temperature 

dependence of the heat capacity, compressibility, and expansivity of supercooled water. 

 

 

2 Thermodynamic model 

 

2.1 Scaling fields, scaling densities, and scaling susceptibilities 

 

 Near the critical point the dependent scaling field  3 1 2,h h h  becomes a 

generalized homogeneous function of the two independent scaling fields h1 and h2 [31]: 
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where 110.0  and 236.0  are universal critical exponents [37,38] and f  , with the 

superscripts ± referring to h2 > 0 and h2 < 0,  is a universal scaling function except for two 

system-dependent amplitudes. At the critical point 

 

1 2 3h h h  .          (2) 

 

Associated with the two independent scaling fields are two scaling densities: a strongly 

fluctuating density 1  (order parameter) and a weakly fluctuating density 2 , such that 

 

3 1 1 2 2dh dh dh            (4) 

 

with 
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In addition we define scaling susceptibilities: a “strong” susceptibility 1 , a “weak” 

susceptibility 2 , and a “cross” susceptibility 12 : 
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2.2 Application to supercooled water 

 

 In a fluid the physical fields are the temperature T, the pressure P, and the 

chemical potential μ (Gibbs energy per mole). To satisfy condition (2) one introduces 

cT T T   , cP P P   , and c     . In this report we adopt the usual convention 

that a subscript c refers to the value of the property at the critical point. To implement a 

scaled thermodynamic representation it is convenient to make all thermodynamic 

properties dimensionless in terms of the temperature Tc and the molar volume Vc at the 

critical point: 

 

c

c

cc

,,
RT

PV
P

RTT

T
T 

 
 ,       (7) 

 

where R is the molar gas constant. As dimensionless physical densities we define 
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where V is the molar volume, S the molar entropy, and CP the isobaric molar heat 

capacity. The corresponding dimensionless isobaric compressibility T



  and coefficient of 

thermal expansion or expansivity coefficient V


 are 
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T P

V V
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According to the principle of complete scaling, the scaling fields, h1, h2, and h3, are 

analytic functions of 


 PT ,  and 


   [39-41]. Thus in first approximation h1, h2, and h3 

can be expressed as linear combinations of


 PT ,  and 


   [39,42] with system-

dependent coefficients. However, as shown by Anisimov and Wang [42,43], the number 

of system-dependent coefficients in the relationships between scaling fields and physical 

fields can be reduced to only a few by proper normalization of the scaling fields. For the 

relationships between the scaling fields and the physical fields near the liquid-liquid 

critical point in supercooled water we adopt: 

 

 



 5 

2

211 







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

PaPaTh ,        (10) 



 TbPh 12 ,         (11) 


 TSPh c3  .        (12) 

 

In Eqs. (10) and (11) we have neglected a contribution from the additional physical field 


   to h1 and h2, since such contributions only become significant in highly asymmetric 

systems [42,43]. In the relations above, a1, a2, and b1 are system-dependent coefficients. 

The coefficients a1 and a2 represent the limiting slope and curvature of the phase-

coexistence or Widom line 1 0h  . The coefficient b1 is a so-called mixing coefficient in 

the revised scaling approximation [43]. While near the vapor-liquid critical point the 

leading term in the expansion of the ordering field h1 is 


   [43,44], the leading term in 

the expansion of h1 near the liquid-liquid critical point in supercooled water is


T , since 

the entropy yields now the major contribution to the order parameter and not the density. 

Equations (10) - (12) differ from the model of Bertrand and Anisimov [34] for 

supercooled water in two aspects. First, following Fuentevilla and Anisimov [33] we 

have added a quadratic pressure contribution in the expansion for h1 to accommodate a 

curvature of the phase-coexistence line 1 0h   as a function of pressure. Second, we 

prefer to formulate the scaling laws in terms of the physical potential  ,T P , rather than 

in terms of  ,P T   as was done by Bertrand and Anisimov, because it leads to simpler 

expressions for some thermodynamic properties. Equation (12) can be further simplified 

by taking c 0S  . From Eqs. (10) - (12) and using the thermodynamic differential relation 

 


 TdSPdVd           (13) 

one finds for the volume 


V and the entropy 


S   

 

21eff,11  


aV ,         (14) 

 

211c  bSS 


,         (15) 

 

with 

 

1,eff 1 22a a a P   .         (16) 

 

The theoretical model only applies to critical parts of the various thermodynamic 

properties. Hence, to investigate whether the theory can account for the anomalous 

temperature dependence of the response functions we separate the isobaric heat 
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capacity


PC , the isothermal compressibility T



 , and the thermal expansivity V


 into a 

critical part and a noncritical background part [34]: 

 

b,cr, PPP CCC


 ,         (17) 

b,cr, TTT



  ,         (18) 

,cr ,bV VV  
  

  .         (19) 

 

The theoretical model only yields expressions for the critical parts of these response 

functions: 

 

2
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 
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   ,cr 1,eff 1 1,eff 1 12 1 2

1
1V a a b b

V

   



       .     (22) 

 

 

2.3  Mean-field approximation 
 

In the mean-field approximation (α = 0, β = ½) the field h3 can be represented by 

an asymptotic Landau expansion [45-47] 

 

2 4

3 0 2 1 0 1 1 1

1 1

2 4
h a h u h      ,        (23) 

 

where a0 and u0 are two system-dependent coefficients. Minimization of the potential as a 

function of 1  at constant h1 yields the condition 

 
3

0 1 0 2 1 1 0u a h h    ,         (24) 

 

from which one can derive expressions for the scaling density 2 and for the scaling 

susceptibilities in terms of the order parameter 1 : 

 

2
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2
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
,         (26) 

 
2 2

2 0 1 1a   ,          (27) 

 

12 0 1 1a    .          (28) 

         

 

 

3 Comparison with experimental data 

 

 We have compared the theoretical model for liquid-liquid critical behavior in the 

mean-field approximation with experimental data for the isobaric heat capacity, the 

isothermal compressibility and the thermal expansivity of supercooled water. The 

background contributions in Eqs. (17) - (19) should be smooth analytic functions of 

temperature and pressure and should not display any singular behavior as a function of 

temperature or pressure [48]. In this report we have tried the simplest background 

representation possible, namely a linear function of temperature for each experimental 

isobar: 

 


 TBAC P b, ,         (29) 

 


 TDCT b, ,         (30) 

 

,bV E F T
 

  ,          (31) 

 

where A, B, C, D, E, F are adjustable constants that depend parametrically on the 

pressure.  

 

The coefficients a1 and a2 in Eq. (10) have been calculated from a fit to the data 

for the Widom line as specified by Mishima [49]: 

 

0

2

211 











PaPaTh .       (32) 

 

We found the coefficient b1 in Eq. (11) to be very small indicating little asymmetry in the 

liquid-liquid critical behavior of supercooled water. Hence, in the final fit the coefficient 

b1 was set equal to zero.  The experimental data for the response functions have been 

obtained as a function of temperature and pressure. At each T and P the scaling fields, h1 

and h2, are calculated from Eqs. (10) and (11) and then the order parameter 1  from Eq. 

(24). The molecular volumes in Eqs. (21) and (22) were estimated from an extrapolation 

of the IAPWS-1995 Formulation for the Thermodynamic Properties of Ordinary Water 
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Substance for General and Scientific Use [50]. Following Fuentevilla and Anisimov [33] 

we have neglected the small contribution from the term 2 12a  in Eq. (21). 

 

The coefficients a0 and uo in the classical Landau expansion (23) and the 

coefficients of the linear temperature dependence of the non-critical background 

contributions, given by Eqs. (30) – (32), were determined from fits to the experimental 

data. The critical parameters were also treated as adjustable constants but subject to the 

condition that they must be located on the Widom line as given by Eq. (32). The resulting 

values for the coefficients of the scaled equation of state are presented in Table 1. For the 

critical parameters we found Pc = 17 MPa and Tc = 229 K. However, the chi-square of the 

fit depends relatively weakly on the values chosen for the critical parameters Pc and Tc , 

so that they could not be determined accurately from the fits. 

 

 A comparison of our mean-field thermodynamic model with experimental data for 

the heat capacity is shown in Fig. 1, with experimental data for the isothermal 

compressibility in Fig. 2, and with experimental data for the thermal expansivity data in 

Fig. 3. These figures confirm that the assumption of liquid-liquid critical behavior of 

supercooled water already in a mean-field approximation yields a physically realistic 

explanation of the anomalous temperature dependence of the isobaric heat capacity, the 

isothermal compressibility, and the thermal expansivity observed experimentally in 

supercooled water. Of course, a mean-field approximation cannot account for the 

divergence of these properties exactly, nor can it deal with weakly divergent properties or 

nondivergent properties, like the temperature and pressure dependence of volume or 

entropy, accurately. To obtain a thermodynamic representation of the thermodynamic 

properties within experimental accuracy it is necessary to apply a nonclassical 

implementation of the thermodynamic model given by Eq. (1). This is considered in a 

separate technical report [54].  
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Table 1: Coefficients of scaled mean-field thermodynamic model.   

 

0a  0.017 

0u  0.98 

1a  0.0734 

2a  0.0165 

1b  0 

cP  17 MPa 

cT  229 K 



 TBAC P b,  


 TC P 615.0161.7b,  

,bV E F T
 

                         P = 0.1 MPa ,b 1.273 1.102v T
 

    

                                                P = 40 MPa 
,b 0.549 0.550V T

 

    

                                                P = 70 MPa 
,b 0.0755 0.162V T

 

    

                                                P = 100 MPa 
,b 0.362 0.199V T

 

   


 TDCT b,                        P = 0.1 MPa 


 TT 0942.0163.0b,  

                                                P = 10 MPa 

 TT 0866.0151.0b,  

                                                P = 50 MPa 

 TT 0665.0120.0b,  

                                                P = 100 MPa 

 TT 0339.00738.0b,  
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Fig. 1a). Comparison of mean-field equation of state with experimental data for the 

isobaric heat capacity at ambient pressure as a function of temperature. The curves 

represent values calculated from the equations presented in this report. The symbols 

indicate experimental data (diamonds [7], triangles [51], stars [52]). The estimated 

noncritical background contribution is plotted as a dashed line. 
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Fig. 1b). Comparison of mean-field equation of state with experimental data for the 

isobaric heat capacity at ambient pressure as a function of temperature in more detail. 
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Fig. 2. Comparison of mean-field equation of state with experimental data for the 

isochoric compressibility along isobars as a function of temperature. The curves represent 

values calculated from the equations presented in this report. The symbols indicate 

experimental data (stars 0.1 MPa [4], open circles 10 MPa [5], squares 50 MPa [5], 

triangles 100 MPa [5]). 
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Fig. 3. Comparison of mean-field equation of state with experimental data for the thermal 

expansivity along isobars as a function of temperature. The curves represent values 

calculated from the equations presented in this report. The symbols indicate experimental 

data (squares 0.1 MPa [8], stars 0.1 MPa [9], open circles 0.1 MPa [52], plus 40 MPa 

[49], diamonds 70 MPa [49], triangles 100 MPa [49]). 
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