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Abstract

A status report is presented concerning the currently available experimental infor-
mation for the thermodynamic properties of supercooled water and the possibility of
modeling these thermodynamic properties on a theoretical basis. Part of the interest
into the thermodynamic behavior of supercooled water is caused by an anomalous
temperature dependence of the heat capacity, the compressibility and the thermal
expansivity. Extrapolation of the IAPWS-95 Formulation for the Thermodynamic
Properties of H2O cannot account for the available thermodynamic information sat-
isfactorily. We show that by assuming the existence of a liquid–liquid critical point,
the theory of critical phenomena can give an accurate account of the experimental
thermodynamic-property data up to a pressure of 150 MPa. In addition, we show
that a phenomenological extension of the theoretical model can account for the
experimental data to 400 MPa. Remaining theoretical issues that still need to be
resolved are elucidated. Nevertheless, the information provided in this report shows
that the critical-point parametric equation of state describes the available thermody-
namic data on supercritical water within experimental accuracy, thus establishing a
benchmark for any further developments in this area.
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1 Introduction

The peculiar thermodynamic behavior of supercooled water is currently receiving
considerable attention. Upon supercooling, water exhibits an anomalous increase
of its isobaric heat capacity and its isothermal compressibility, and an anomalous
decrease of its expansivity coefficient [1]. One thermodynamically consistent expla-
nation, originally proposed by Poole et al. [2], is based on the presumed existence
of a liquid–liquid critical point (LLCP) in water deep in the supercooled region.
The hypothesis of the existence of a critical point in metastable water has been con-
sidered by many authors as recently reviewed by Bertrand and Anisimov [3]. In
addition, several authors have made attempts to develop a thermodynamic model
for the thermodynamic properties of supercooled water based on the LLCP sce-
nario [3–7]. The existence of a liquid–liquid critical point in supercooled water is
still being debated [8,9]. The purpose of this technical report is to demonstrate that a
theoretical model based on the presumed existence of a second critical point in wa-
ter is capable of representing the available experimental thermodynamic property
data for supercooled water.

This report is organized as follows. In Section 2 we provide an assessment of
the IAPWS-95 formulation [10,11] for the thermodynamic properties of H2O for
water at temperatures above the melting temperature when extrapolated into the
supercooled region, confirming the need for an improved equation of state for su-
percooled water. In Section 3 we review the currently available experimental infor-
mation for the thermodynamic properties of supercooled water. In Section 4 we for-
mulate a thermodynamic model for supercooled water by adopting suitable physical
scaling fields relative to the location of a liquid–liquid critical point in metastable
water. In Section 5 we show that this theoretical model does yield an accurate repre-
sentation of the thermodynamic property data of supercooled water up to pressures
of 150 MPa. In Section 6 we present a phenomenological extension of the theoret-
ical model and show that this extension allows a representation of all experimental
data for supercooled water up to the maximum available pressure of 400 MPa. The
report concludes with a discussion of the results and of some related issues in Sec-
tion 7.

2 IAPWS-95 formulation in the supercooled region

The performance of IAPWS-95 in the supercooled metastable region has been as-
sessed first by Wagner and Pruß [11] and, more recently, by an IAPWS task group
on “IAPWS-95 properties in the metastable region of seawater freezing point low-
ering” in 2007 [12]. The task group performed a literature search in 2005 and did
not find any new data in the supercooled region that had not been mentioned in the
earlier paper of Wagner and Pruß [11]. Hence, the task group concluded that the
IAPWS-95 formulation agreed with existing experimental data of supercooled wa-
ter at ordinary pressures. The task group also concluded that there were no data for
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Figure 1: Densities according to IAPWS-95 (curves). IAPWS-95 is valid to the right of
the melting curve TM; the IAPWS-95 values left of the melting curve are extrapolations.
The symbols represent experimental data of Mishima [13], Sotani et al. [14] and Hare
and Sorensen [15]. The symbols for Mishima’s densities on different isobars are alternat-
ingly open and filled to guide the eye. Mishima’s data have been corrected as described in
Sec. 3.1.

supercooled water at high pressures.
However, there are compressibility data of Kanno and Angell (1979) up to 190

MPa [18], expansivity data of Ter Minassian et al. (1981) up to 400 MPa [16], den-
sity data of Sotani et al. (2000) up to 200 MPa [14], of Asada et al. (2002) up to
380 MPa [19] and of Mishima (2010) up to 400 MPa [13]. A comparison of the
densities calculated from the IAPWS-95 formulation with the experimental den-
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sity data of Hare and Sorensen (1987) [15], of Sotani et al. (2000) [14], and of
Mishima (2010) [13] is shown in Fig. 1. While the IAPWS-95 formulation does
indeed represent the experimental density data at ambient pressure, the deviations
from the formulation become larger and larger with increasing pressure. Especially
at higher pressures, there is a sizable discrepancy between the IAPWS-95 formula-
tion and the experimental data; the slope (or the expansivity) has even a different
sign. According to Wagner and Pruß [11], the behavior of the expansivity coeffi-
cient αV calculated from the IAPWS-95 formulation should be reasonable in the
liquid region at low temperature. However, from Fig. 2 we see that the IAPWS-95
expansivity is in error by up to 50% in the low-temperature region even at temper-
atures above the melting temperature where the IAPWS-95 formulation should be
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Figure 2: Expansivity coefficient according to IAPWS-95 (solid curves: within region of
validity, dashed curves: extrapolation). Symbols represent experimental data of Ter Minas-
sian et al. [16] and Hare and Sorensen [15,17].
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Figure 3: Isothermal compressibility according to IAPWS-95 (curves). IAPWS-95 is valid
to the right of the melting curve TM; the IAPWS-95 values left of the melting curve are
extrapolations. Symbols represent experimental data of Speedy and Angell [20], Kanno and
Angell [18], and Mishima [13]. Solid and open symbols with the same shape correspond to
the same pressure.

valid. The isothermal compressibility κT calculated from the IAPWS-95 formula-
tion agrees with the experimental data down to about 250 K and up to 400 MPa, as
shown in Fig. 3. However, at lower temperatures, the IAPWS-95 compressibilities
do not even qualitatively agree with the data.

In the supercooled region, IAPWS-95 predicts a re-entrant liquid spinodal, as
shown in Fig. 4. The spinodal pressure becomes positive at 233.6 K, which is a few
degrees below the homogeneous nucleation limit. At about 195 K and 175 MPa,
the spinodal curve crosses the homogeneous nucleation limit and enters the region
where supercooled water can be experimentally observed. Up to about 290 MPa,
the spinodal curve stays in the experimentally accessible range. Since a spinodal
has not been observed there, the spinodal of IAPWS-95 contradicts experimental
evidence. More fundamentally, a re-entrant spinodal is problematic because it has
been shown to be thermodynamically implausible [1,23].
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Figure 4: Location of the liquid spinodal according to the IAPWS-95 formulation. The
curved marked with TH is the homogeneous ice nucleation limit [21,22].
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3 Review of experimental data

3.1 Density data

Since the IAPWS-95 formulation was developed, new data for the density for super-
cooled water have been reported. Most notable is the recent work of Mishima [13],
who measured the density and compressibility down to 200 K and up to 400 MPa
(Fig. 5). More accurate density measurements have been published by Sotani et al.
[14] and Asada et al. [19], but their lowest temperature is 253 K, so in a larger
temperature range Mishima’s data are the only data available.

The density data of Mishima show systematic differences of up to 5 kg/m3 with
the densities reported by Asada et al., with IAPWS-95 (in the region where it is
reliable), and with the equation of state of Saul and Wagner [25]. The differences
appear to be mostly pressure dependent and only slightly temperature dependent;
see Fig. 6. In the range from 273 K to 373 K and 0 MPa to 380 MPa, where the
three other data sets (Asada et al., IAPWS-95, Saul and Wagner) overlap and can
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Figure 5: Location of the experimental density data [13–15,19]. The solid curve is the
ice–liquid phase boundary [24]; the dashed curve is the homogeneous ice nucleation limit
[21,22]. The location of the dashed curve above 300 MPa is uncertain.
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pressure P in MPa.

be considered reliable, their maximum mutual difference is 0.8 kg/m3. Therefore,
we decided that a correction of the Mishima data is justified. A pressure-dependent
density correction was determined by fitting a quadratic function of the pressure to
the difference of Mishima’s densities and the correlation* of Asada et al., between
245 K and 274 K (Fig. 6). This density correction was then subtracted from all
densities measured by Mishima.

The accurate densities measured by Sotani et al. [14] and Asada et al. [19] are
not tabulated but only given in graphs. Furthermore, these graphs do not show the
densities themselves but only their deviation from a reference correlation (the Saul–
Wagner 1989 equation of state in the paper of Sotani et al. and IAPWS-95 in the
article of Asada et al.). Multiple attempts to obtain the original data from the authors
of the two articles have failed, so the data were extracted from the graphs. The
conversion causes an uncertainty in the pressure of about 0.5 MPa.

At atmospheric pressure, Hare and Sorensen [15] measured the density down
to 240 K. They showed that their measurements were not affected by the ‘excess
density’ effect, which occurs in thin capillary tubes and caused too large densities
in some experiments of others.

The only experimental water density data to which the IAPWS-95 formulation
was fitted in the supercooled liquid region are those from Kell [26]. According to
Wagner and Pruß [11], these data are “very accurate”. However, the density values
[27] came from a fit that is valid only above the freezing point but was extrapolated
down to−37 °C, while Kell cautioned that no claim for the accuracy of extrapolated
values could be made. Coincidentally, the extrapolated fit of Kell agrees with Hare

* There is a sign error in the correlation of Asada et al. [19]: the coefficient a6 in their Table 1 should
have a positive sign.
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and Sorensen’s [15] data. Therefore, if the IAPWS-95 formulation had been fitted
to Hare and Sorensen’s data instead of Kell’s fit, the result would probably have
been almost the same.

3.2 Density-derivative data

Both the isothermal compressibility and the expansivity coefficient of supercooled
water have been measured (Fig. 7). The most accurate compressibility data are from
Kanno and Angell [18], whereas Mishima’s [13] data cover the largest temperature
range. The only expansivity measurements are from Ter Minassian et al. [16]. Hare
and Sorensen [15,17] also published expansivities (at 0.1 MPa), but these were
obtained from the derivative of a fit to their density data.

The data from Speedy and Angell [20] and Kanno and Angell [18] were digi-
tized from their graphs. Ter Minassian et al. [16] provide an empirical correlation
that reproduces their data.
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Figure 7: Location of the experimental density-derivative data. Ter Minassian et al. [16]
measured the expansivity coefficient, the other authors [13,18,20] measured the isothermal
compressibility.



Thermodynamic modeling of supercooled water 12

3.3 Heat-capacity data

The isobaric heat capacity of supercooled water has been measured only at atmo-
spheric pressure. Measurements by Anisimov et al. [28] down to 266 K already
showed anomalous behavior. Angell et al. [29,30] extended the range of measure-
ments down to 236 K. Recent measurements by Archer and Carter [31], also down
to 236 K, do not agree with those of Angell et al. [30]. Archer and Carter suggest
that the temperature calibration procedure of Angell et al. caused a systematic error
in their measurements. Furthermore, Archer and Carter suspect that measurements
of Tombari et al. [32] (down to 245 K) were also affected by systematic calorimetric
errors.

In the stable region, there exist heat-capacity measurements up to 100 MPa by
Sirota et al. [33] with an uncertainty of 0.3%. Although Wagner and Pruß [11] claim
that IAPWS-95 represents all data to within the experimental uncertainty, IAPWS-
95 systematically deviates from part of the data of Sirota et al.. For the data at 273 K,
the mean deviation is 0.4%, with individual points deviating up to 0.6%. However,
at 273 K IAPWS-95 agrees with the expansivity correlation of Ter Minassian et al.,
with which a comparison can be made by using a thermodynamic relation for the
isothermal pressure derivative (∂CP/∂P)T of the isobaric heat capacity CP. There-
fore, the data of Sirota et al. have not been used in our analysis.

Recently, Manyà et al. [34] have measured the heat capacity at 4 MPa from
298 K to 465 K. Although this range does not include supercooled states, their
lowest-temperature results could be used in principle to improve the behavior of our
model. However, it turns out that the results of Manyà et al. imply that (∂CP/∂P)T >
0 for pressures lower than 4 MPa, which contradicts the thermodynamic relation
(∂CP/∂P)T =−T (∂ 2V/∂T 2)P, with V being the molar volume. Hence, the data of
Manyà et al. will not be considered.

3.4 Liquid–liquid coexistence curve

Both the existence of a second critical point and its location are still being debated in
the literature. If the second critical point exists, there should be a liquid–liquid tran-
sition (LLT) curve – separating a hypothetical high-density liquid and low-density
liquid – which ends at the critical point. At pressures below the critical pressure,
water’s response functions exhibit an extremum near the Widom line, which is the
extension of the LLT curve into the one-phase region and the locus of maximum
fluctuations.

While the location of the critical point obtained by different simulations varies
greatly, different attempts to locate the LLT and the Widom line from experimen-
tal data have yielded approximately the same result. Kanno and Angell [18] fitted
power laws to their compressibility measurements and obtained singular temper-
atures located 5 K to 12 K below the homogeneous nucleation temperature TH
(Fig. 8), suggesting a LLT that mimics the TH curve but shifted to lower temper-
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Figure 8: Homogeneous nucleation temperatures (open circles [21] and squares [22] and
fitted solid curve), Mishima’s [13] conjectured liquid–liquid coexistence curve (dotted) and
critical point (cross), and Kanno and Angell’s curve (dashed) connecting the fitted singular
temperatures (solid circles) [18]. Open diamond: bend in the melting curve of ice IV [35];
plus sign: critical point of Bertrand and Anisimov [3].

ature. Mishima measured metastable melting curves of H2O ice IV [35] and D2O
ices IV and V [36], and found that they suddenly bent at temperatures of 4 K to 7 K
below TH. According to Mishima, this is indirect evidence for the location of the
LLT, but a one-to-one correspondence between a break in the melting curve and the
LLT has been questioned by Imre and Rzoska [37].

Mishima [13] approximated the LLT by a quadratic function of T with approx-
imately the same shape as the TH curve, but allowing a shift to lower temperature.
His final result, shown in Fig. 8, is close to Kanno and Angell’s curve for pressures
up to 100 MPa, albeit with a different curvature.
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4 Thermodynamic model for supercooled water

4.1 Scaling fields and thermodynamic properties

Fluids belong to the universality class of Ising-like systems whose critical behavior
is characterized by two independent scaling fields, a “strong” scaling field h1 (order-
ing field) and a “weak” scaling field h2, and by a dependent scaling field h3 which
asymptotically close to the critical point becomes a generalized homogeneous func-
tion of h1 and h2 [38–40]:

h3(h1,h2)≈ |h2|2−α f±
(

h1

|h2|2−α−β

)
. (1)

In this expression α ' 0.110 and β ' 0.3265 are universal critical exponents [41,
42] and f±, with the superscripts ± referring to h2 > 0 and h2 < 0, is a univer-
sal scaling function except for two system-dependent amplitudes. Associated with
these scaling fields are two conjugate scaling densities, a strongly fluctuating scal-
ing density φ1 (order parameter) and a weakly fluctuating scaling density φ2, such
that

dh3 = φ1 dh1 +φ2 dh2 (2)

with

φ1 =

(
∂h3

∂h1

)
h2

, φ2 =

(
∂h3

∂h2

)
h1

. (3)

In addition one can define three susceptibilities, a “strong” susceptibility χ1, a
“weak” susceptibility χ2, and a “cross” susceptibility χ12:

χ1 =

(
∂φ1

∂h1

)
h2

, χ2 =

(
∂φ2

∂h2

)
h1

, χ12 =

(
∂φ1

∂h2

)
h1

=

(
∂φ2

∂h1

)
h2

. (4)

In fluids and fluid mixtures one encounters a large variety of different types of
critical phenomena [43]. The asymptotic thermodynamic behavior near all kinds of
critical points can be described in terms of Eq. (1). The differences arise from the
actual relationships between the scaling fields and the physical fields [44], subject
to the condition that at the critical point

h1 = h2 = h3 = 0. (5)

In one-component fluids the relevant physical fields are the chemical potential µ

(Gibbs energy per mole), the temperature T , and the pressure P. To satisfy condi-
tion (5) one defines ∆µ = µ−µc, ∆T = T −Tc, and ∆P = P−Pc. In this report we
adopt the usual convention that a subscript c refers to the value of the property at the
critical point. There are two special models for critical behavior that deserve some
attention. The first is the lattice gas in which the ordering field h1 is asymptotically
proportional to ∆µ and the weak scaling field proportional to ∆T [45–47]. Hence, in
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the lattice gas φ1 is proportional to ∆ρ = ρ−ρc and φ2 proportional to ∆s = s− sc,
where ρ is the mass density and s the entropy density. The lattice gas provides a
model for the vapor–liquid critical point where the mass density yields the major
contribution to the order parameter. In practice, the asymptotic critical behavior of a
fluid near the critical point, including that of H2O [48], can be described by a slight
modification of the lattice-gas model to account for some lack of vapor–liquid sym-
metry in real fluids. Another special model is a lattice liquid in which the ordering
field is asymptotically proportional to ∆T and in which the weak scaling field is
proportional to ∆µ [3]. Near the liquid–liquid critical point in supercooled water
the entropy yields the major contribution to the order parameter and not the mass
density, as first pointed out by Fuentevilla and Anisimov [6]. Thus the thermody-
namic properties near this liquid–liquid critical point can be described by a slight
modification of the lattice-liquid model to account for some lack of symmetry in
the order parameter [3].

To implement a scaled thermodynamic representation it is convenient to make
all thermodynamic properties dimensionless in terms of the critical parameters Tc
and ρc or Vc = ρ−1

c :

T̂ =
T
Tc
, µ̂ =

µ

RTc
, P̂ =

PVc

RTc
, (6)

where R is the ideal-gas constant. For the dimensionless physical densities we define

V̂ =
V
Vc

, Ŝ =
S
R
, ĈP =

CP

R
, (7)

where V is the molar volume, S the molar entropy, and CP the isobaric molar heat
capacity. The thermodynamic model of Bertrand and Anisimov was formulated in
terms of P̂(µ̂, T̂ ) for which

dP̂ = V̂−1dµ̂ +V̂−1ŜdT̂ . (8)

We have found it more convenient to formulate the thermodynamic model in terms
of µ̂(P̂, T̂ ) for which

dµ̂ = V̂ dP̂− ŜdT̂ . (9)

Thus in our model we identify the order parameter with the entropy itself instead of
the entropy density. In our model the scaling fields are related to the physical fields
as

h1 = ∆T̂ +a′∆P̂, (10)

h2 =−∆P̂+b′∆T̂ , (11)

h3 = ∆P̂−∆µ̂ +∆µ̂
r, (12)

with

∆T̂ =
T −Tc

Tc
, ∆P̂ =

(P−Pc)Vc

RTc
, ∆µ̂ =

µ−µc

RTc
. (13)
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In Eq. (10) a′ represents the limiting slope −dT̂/dP̂ of the phase-coexistence or
Widom line. In Eq. (11) b′ is a so-called mixing coefficient which accounts for the
fact that the critical phase transition in supercooled water is not completely sym-
metric in terms of the entropy order parameter. Introduction of mixing of this type
is also known in the literature as revised-scaling approximation [49]. Equation (1)
only represents the asymptotic behavior of the so-called singular critical contribu-
tions to the thermodynamic properties. To obtain a complete representation of the
thermodynamic properties we need to add a regular (i.e., analytic) background con-
tribution. As has been common practice in developing scaled equations of state in
fluids near the vapor-liquid critical point [48,49], the regular background contribu-
tion is represented by a truncated Taylor-series expansion around the critical point:

∆µ̂
r = ∑

m,n
cmn(∆T̂ )m(∆P̂)n, with c00 = c10 = c01 = 0. (14)

The first two terms in the temperature expansion of ∆µ̂ r depend on the choice of
zero entropy and energy and do not appear in the expressions of any of the physi-
cally observable thermodynamic properties. Hence, these coefficients may be set to
zero. Furthermore, the coefficient c01 = V̂c−1= 0. Strictly speaking, critical fluctu-
ations also yield an analytic contribution to h3 [50,51]. In this report we incorporate
this contribution into the linear background contribution as has also been done often
in the past.

From the fundamental thermodynamic differential relation (9) it follows that

V̂ =

(
∂ µ̂

∂ P̂

)
T̂
= 1−a′φ1 +φ2 +∆µ̂

r
P̂, (15)

Ŝ =−
(

∂ µ̂

∂ T̂

)
P̂
= φ1 +b′φ2−∆µ̂

r
T̂ . (16)

In this report we adopt the convention that a subscript P̂ indicates a derivative with
respect to P̂ at constant T̂ and a subscript T̂ a derivative with respect to T̂ at constant
P̂. Finally, the dimensionless isothermal compressibility κ̂T , expansivity coefficient
α̂V , and isobaric heat capacity ĈP can be expressed in terms of the scaling suscep-
tibilities χ1, χ2, and χ12:

κ̂T =− 1
V̂

(
∂V̂
∂ P̂

)
T
=

1
V̂

[
(a′)2

χ1 +χ2−2a′χ12−∆µ̂
r
P̂P̂

]
, (17)

α̂V =
1
V̂

(
∂V̂
∂ T̂

)
P
=

1
V̂

[
−a′χ1 +b′χ2 +(1−a′b′)χ12 +∆µ̂

r
T̂ P̂

]
, (18)

ĈP = T̂
(

∂ Ŝ
∂ T̂

)
P
= T̂

[
χ1 +(b′)2

χ2 +2b′χ12−∆µ̂
r
T̂ T̂

]
. (19)
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4.2 Parametric equation of state

It is not possible to write the scaled expression (1) for h3 as an explicit function
of h1 and h2. Such attempts always cause singular behavior of the thermodynamic
potential in the one-phase region either at h1 = 0 or at h2 = 0. This problem is
solved by replacing the two independent scaling fields, h1 and h2, with two para-
metric variables: a variable r which measures a “distance” from the critical point
and an angular variable θ which measures the location on a contour of constant r.
A transformation most frequently adopted has the form:

h1 = ar2−α−β
θ(1−θ

2), h2 = r(1−b2
θ

2). (20)

From Eqs. (1) and (3) it then follows that the order parameter φ1 must have the form
[52]:

φ1 = k rβ M(θ), (21)

where M(θ) is a universal analytic function of θ . In principle, this function can
be calculated from the renormalization-group theory of critical phenomena [53].
In practice one adopts an analytic approximant for M(θ), the simplest one being
M(θ) = θ [54]:

φ1 = k rβ
θ . (22)

Equations (20) and (22) define what is known as the “linear model” parametric
equation of state. In these equations a and k are two system-dependent amplitudes
related to the two system-dependent amplitudes in Eq. (1), while b2 is a universal
constant which is often approximated by [55]

b2 =
2−α−4β

(2−α−2β )(1−2β )
' 1.361. (23)

Equations (20) and (22) with the specific choice (23) for b2 is known as the “re-
stricted” linear model [47]. The resulting parametric equations for the various ther-
modynamic properties can be found in many publications [47–49,51,56,57]. The
parametric equations needed for the analysis in this report are listed in Appendix A.

5 Comparison with experimental data

The liquid–liquid transition (LLT) curve that follows from Eq. (10) is a straight line,
in contrast to the LLT curves in Fig. 8. We consider a curved LLT to be more real-
istic than a straight line, but curvature in the scaled model (e.g., due to a pressure-
dependent a′) yields terms proportional to φ1 in one or more response functions.
Unlike the scaling susceptibilities, φ1 does not vanish far away from the critical
point, where the critical part should not play any role. A phenomenological attempt
to include curvature of the LLT curve has been made by Fuentevilla and Anisi-
mov [6]. However, it is not yet clear how to include such a curvature systematically
into the theory.
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Table 1: Parameter values for the model of Sec. 5

Parameter Value Parameter Value

Tc/K 224.22 c12 −0.007 896 9
Pc/MPa 27.500 c13 0.009 088 2
ρc/(kgm−3) 948.55 c14 −0.000 450 23
a 0.233 49 c20 −3.889 9
k 0.377 13 c21 0.177 93
a′ 0.090 000 c22 −0.063 409
c02 0.073 630 c23 −0.007 515 0
c03 −0.000 627 73 c30 0.698 64
c04 −0.001 088 2 c31 −0.126 39
c05 0.000 319 55 c32 0.075 590
c11 0.153 82 c41 0.009 873 1

As Fig. 8 shows, the LLT curve cannot be accurately represented by a single
straight line in the entire pressure range. We have, therefore, restricted the range
of our model to pressures up to 150 MPa. Furthermore, the slope of the LLT line
was constrained to values that are close to the slopes of the curves of Kanno and
Angell [18] and Mishima [13] in the range of 0 MPa to 150 MPa. Specifically, the
value of a′ in Eq. (10) was restricted to the range of 0.065 to 0.090. Because the
position of the LLT is not precisely known, the critical point was allowed to deviate
up to 3 K from Mishima’s curve. During the fitting process, it was found that the
results of the model were quite insensitive to the critical pressure Pc. For that reason,
Pc was constrained to the value of 27.5 MPa obtained by Bertrand and Anisimov [3].
It was also found that a nonzero mixing coefficient b′ did not significantly improve
the fit, so b′ was set to zero. This means physically that the liquid-critical behavior
in supercooled water exhibits little asymmetry in the order parameter.

Changes in the third decimal place of the values of the critical exponents α and
β result in small density changes that are of the order of 0.1%. However, some of the
density measurements for water are more accurate than 0.1%; for example, the ac-
curacy of the data of Hare and Sorensen [15] and Sotani et al. [14] is 0.01%. There-
fore, the values of the critical exponents must be given with at least four decimal
places. We have adopted the values of Pelissetto and Vicari [41] and have set α =
0.1100 and β = 0.3265. The values for the molar mass of H2O (18.015 268 g/mol)
and the ideal-gas constant R (8.314 472 Jmol−1 K−1) were taken from Wagner and
Pruß [11].

The number of terms in the background ∆µ̂ r [Eq. (14)] was increased step by
step until the experimental data could be represented. The final background contains
sixteen free parameters. The reason for the many background terms of higher order
in temperature and pressure is that the response functions are second derivatives
of the thermodynamic potential. To obtain, for example, a background term in the
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heat capacity of second order in temperature, it is necessary to have a fourth-order
temperature-dependent term in the potential. The terms in the backgrounds for each
property are at most third order in temperature or in pressure.

Besides the background parameters, there are five additional parameters to be
determined: the critical temperature Tc and volume Vc, the linear-model amplitudes
a and k, and the slope of the LLT line a′. As noted, the values of Tc and a′ were
constrained to a limited range.

The model was fitted to heat-capacity data of Archer and Carter [31] and IAPWS-
95, expansivity data of Hare and Sorensen [15], IAPWS-95 and Ter Minassian
[16], compressibility data of Speedy and Angell [20], Kanno and Angell [18] and
Mishima [13], and density data of Hare and Sorensen [15], Sotani et al. [14],
IAPWS-95 and Mishima [13]. For all quantities except the heat capacity, values
calculated from IAPWS-95 were only used at 0.1 MPa. (As noted in Section 3.3,
values of IAPWS-95 replace the high-pressure heat-capacity data of Sirota et al.
[33].) To reduce the time needed for optimization, not all data points were used in
the fitting process; about 60 points were selected for each of the four quantities. The
locations of the selected points are shown in Fig. 9.

The deviation of the model from an experimental data point is measured by the
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Figure 9: Location of experimental data points used for the fit of the model (plus, cross,
circle, and square symbols). The solid curve marks the homogeneous nucleation limit. The
long-dashed line marked by LLT is the model’s liquid–liquid transition line and Widom line,
with the critical point denoted by C. Also shown are the curves of Kanno and Angell [18]
and Mishima [13].
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Mishima’s densities on different isobars are alternatingly open and filled to guide the eye.

relative residual [58]
qmodel

n −qexpt
n

σq,n
, (24)

where qn is data point number n of property q, ‘model’ refers to the value calculated
from the model and ‘expt’ refers to the experimental value. The residual is scaled
by the experimental uncertainty σq,n of that particular data point. For some data the
uncertainty was not given and had to be estimated. The model was optimized by
minimizing the sum of squared residuals; more precisely, the reduced chi-squared
statistic

χ
2
red =

1
N

N

∑
n=1

(
qmodel

n −qexpt
n

σq,n

)2

(25)

was minimized, where N is the number of data points. It should be noted that the
χ2

red computed here cannot be used to assess the quality of the fit in a statistically
rigorous way, because the true χ2

red cannot be computed for nonlinear models [59].
The optimized parameters are listed in Table 1. The value of a′ is exactly 0.09

because a′ was restricted to the range of 0.065 to 0.090, and the optimum is located
at the edge of this range.
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Figure 11: Densities according to the model (curves). The symbols represent experimental
data of Mishima [13], Sotani et al. [14] and Hare and Sorensen [15]. The symbols for
Mishima’s densities on different isotherms are alternatingly open and filled to guide the
eye. To prevent overlap, the densities for different temperatures have been shifted vertically
by 2 kg m−3× (T/K−300).

The model is compared with density data in Figs. 10 and 11. The model repre-
sents the data well. The difference between some of Mishima’s data points and the
model is larger than the error bars, but this could be caused by an underestimation
of the uncertainties by Mishima. In Fig. 10, the density jumps at low temperature
because the isobars cross the LLT curve there.

In Fig. 12, the temperature of maximum density is plotted as a function of pres-
sure, both for the model and for the IAPWS-95 formulation. At pressures higher
than about 60 MPa, the values of IAPWS-95 deviate from the experimental data,
while the current model agrees with the data. At negative pressures, the model does
not agree with the experimental data, but the model was not fitted to any data at
negative pressures, and negative pressures are not in the range of validity of the
current model.

Compressibility data are compared with values of the model in Fig. 13. The iso-
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Figure 12: Temperature of maximum density as a function of pressure according to the
model (thick solid curve) and IAPWS-95 (dashed curve). TM marks the melting curve [24]
and its extension to negative pressures [60]; TH denotes the homogeneous nucleation limit
[21]. Symbols represent experimental data [13,14,16,61,62]. The temperatures of maximum
density for Mishima’s data [13] were determined by locating the maxima of fits to his
density data.

bars of 0.1 MPa and 10 MPa intersect at about 253 K. The experimental data do not
confirm or rule out such an intersection because of the scatter and the lack of data
below 245 K. However, the intersection implies that the pressure derivative of the
compressibility, (∂κT/∂P)T , is positive at low temperature and ordinary pressures.

Figure 14 shows experimental data for the expansivity coefficient and the values
predicted by the model for five pressures. The model follows the experimental data,
contrary to the IAPWS-95 formulation. At 240 K, where the difference between
Hare and Sorensen’s data of 1986 and 1987 is largest, the expansivity predicted by
the model lies between them.

Heat-capacity data are compared with the model’s predictions in Figs. 15 and 16.
In Fig. 15, it is seen that the model follows the data of Archer and Carter [31],
whereas IAPWS-95 follows the data of Angell et al. [30], to which it was fitted.
However, the curvature of the 0.1 MPa isobar of the model is slightly higher than
that suggested by the data of Archer and Carter. Murphy and Koop [63] proposed a
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heat capacity curve with a broader peak than that of our model, but with about the
same maximum value. Figure 16 shows the heat capacity as a function of pressure.
As mentioned in Section 3.3, there is a systematic difference between the data of
Sirota et al. [33] and the values of IAPWS-95, and the data of Sirota et al. were
not selected for the fit of the current model. At 250 K and pressures above about
50 MPa, the model predicts a smaller pressure dependence of the heat capacity than
IAPWS-95. The pressure dependence of the heat capacity is thermodynamically
related to the expansivity coefficient, and we have seen that the expansivity coeffi-
cient of IAPWS-95 does not agree with experimental data at low temperature and
high pressure (see Fig. 14). Therefore, differences between the heat-capacity values
of the current model and IAPWS-95 are to be expected.

To analyze the quality of the model more extensively, residuals have been cal-
culated for all available experimental data points in the range of validity, not just
those selected for fitting. Figure 17 shows that the residuals are roughly normally
distributed.
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Figure 13: Isothermal compressibility according to the model (curves). For clarity, the
curves are not shown for temperatures below the LLT line in the bottom graph. Symbols rep-
resent experimental data of Speedy and Angell [20], Kanno and Angell [18], and Mishima
[13]. Solid and open symbols with the same shape correspond to the same pressure.
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6 Phenomenological extension of thermodynamic model

If the LLT line is allowed to deviate more from the expected location, almost all
experimental data up to 400 MPa can be represented. The constraint that the critical
point should be at most 3 K from Mishima’s LLT curve was removed. In addition,
the slope of the LLT line and the critical pressure were not constrained. With these
constraints removed, it was possible to fit all experimental data with the model
equation without the addition of any parameters.

The model was fitted to a selection of experimental data at pressures up to
400 MPa which is shown in Fig. 18. The resulting parameters are listed in Table 2.
The critical pressure is about a factor of two higher than in the previous section.

A comparison between the density values predicted by the model is presented
in Figs. 19 and 20. The model reproduces most of the data, except Mishima’s points
between 160 MPa and 300 MPa below 230 K. The temperature of maximum den-
sity is plotted in Fig. 21. The results of the model are similar to those of the previous
section (Fig. 12) in the range from 0 MPa to 120 MPa. At higher pressures, the ex-
tended model predicts significantly higher temperatures of maximum density than
the previous model, but the results are still within the experimental uncertainty. At
negative pressures, the extended model performs better than the previous model.

Compressibility data are compared with values of the model in Fig. 22. As in the
previous model, the isobars of 0.1 MPa and 10 MPa intersect, but the intersection is
located at a lower temperature. The data of Speedy and Angell [20] and Kanno and
Angell [18] are well represented. The model does not reproduce all of Mishima’s
data, but these data have a lower accuracy than the data of Angell and coworkers.

Figure 23 shows the expansivity coefficient predicted by the extended model.
Below 250 K, the model agrees better with the data of Hare and Sorensen of 1986
than with their data of 1987.

Table 2: Parameter values for the model of Sec. 6

Parameter Value Parameter Value

Tc/K 214.175 c12 −1.894 96 ×10−3

Pc/MPa 57.765 8 c13 2.114 83 ×10−3

ρc/(kgm−3) 955.225 c14 −2.825 38 ×10−4

a 0.121 158 c20 −3.651 73
k 0.393 246 c21 −3.570 12 ×10−3

a′ 0.113 638 c22 −2.788 49 ×10−2

c02 3.754 19 ×10−2 c23 1.220 32 ×10−3

c03 −6.574 63 ×10−4 c30 5.606 99 ×10−1

c04 1.735 55 ×10−5 c31 1.014 06 ×10−1

c05 7.732 26 ×10−6 c32 1.407 91 ×10−2

c11 1.788 41 ×10−1 c41 −7.855 36 ×10−2
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Figure 18: Location of experimental data points used for the fit of the model (plus, cross,
circle, and square symbols). The solid curve marks the homogeneous nucleation limit. The
long-dashed line marked by LLT is the model’s liquid–liquid transition line and Widom line,
with the critical point denoted by C. Also shown are the curves of Kanno and Angell [18]
and Mishima [13].

The calculated heat capacity at 0.1 MPa is compared with experimental data
in Fig. 24. For this model, the maximum of the heat capacity is lower than for
the previous model. The curvature of the data of Archer and Carter [31] is better
represented than previously, but there is still a systematic difference between their
data and the model’s results. The heat capacity is shown as a function of pressure
in Fig. 25. There are large differences between the results of the model and those
of IAPWS-95; the model predicts a minimum in the 250 K heat-capacity isotherm
at about 240 MPa. A minimum in the heat capacity at this location was also pre-
dicted by Ter Minassian et al. [16] based on their measurements of the expansivity
coefficient.

Figure 26 shows histograms of the reduced residuals of each quantity, calculated
for all available data points, not just those selected for fitting. It is seen that the dis-
tributions are broader than those of the model of the previous section. The tails of
the compressibility and density histograms indicate that the model does not repre-
sent all experimental points. Some compressibility data points of Mishima [13] at
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Figure 19: Densities according to the model (curves). The symbols represent experimental
data of Mishima [13], Sotani et al. [14] and Hare and Sorensen [15]. The symbols for
Mishima’s densities on different isobars are alternatingly open and filled to guide the eye.
The vertical lines through Mishima’s points are uncertainties given by Mishima.

200 K and 205 K between 200 MPa and 350 MPa show deviations of about 20%
from the values calculated by the model. However, since Mishima did not specify
the accuracy of his compressibility measurements, the significance of the deviation
is unknown. In the case of the density, several low-temperature measurements of
Mishima [13] differ up to about 0.7% from the values computed by the model as
shown in Figs. 19 and 20.
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Figure 20: Densities according to the model (curves). The symbols represent experimental
data of Mishima [13], Sotani et al. [14] and Hare and Sorensen [15]. The symbols for
Mishima’s densities on different isotherms are alternatingly open and filled to guide the
eye. To prevent overlap, the densities for different temperatures have been shifted vertically
by 4 kg m−3× (T/K−300).
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Figure 21: Temperature of maximum density as a function of pressure according to the
model (thick solid curve) and IAPWS-95 (dashed curve). TM marks the melting curve [24]
and its extension to negative pressures [60]; TH denotes the homogeneous nucleation limit
[21]. Symbols represent experimental data [13,14,16,61,62]. The temperatures of maximum
density for Mishima’s data [13] were determined by locating the maxima of fits to his
density data.
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Figure 22: Isothermal compressibility according to the model (curves). For clarity, the
curves are not shown for temperatures below the LLT line in the bottom graph. Sym-
bols represent experimental data of Speedy and Angell [20], Kanno and Angell [18], and
Mishima [13]. Solid and open symbols with the same shape correspond to the same pres-
sure.
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within region of validity, dotted: extrapolations). Symbols represent experimental data of
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Figure 24: Isobaric heat capacity versus temperature according to the model (solid curve),
IAPWS-95 (short dashed), and Murphy and Koop (dotted). The background contribution of
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Figure 25: Isobaric heat capacity versus pressure according to the model (solid curves) and
IAPWS-95 (dashed). Symbols represent experimental data of Sirota et al. [33].
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Figure 26: Histograms of reduced residuals [Eq. (24)] of the four quantities. In each graph,
N indicates the number of data points and χ2

red is the reduced chi-squared [Eq. (25)].
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7 Discussion

We have seen that a theoretical model based on the assumption of a liquid–liquid
critical point in supercooled water can represent the thermodynamic properties of
supercooled water to pressures of 150 MPa. Moreover, by allowing the slope of the
liquid–liquid transition (LLT) line and the critical pressure to be freely adjustable
parameters the model can represent almost all available thermodynamic property
data for supercooled water. Nevertheless, there are still a number of issues that
need to be considered.

First, the theoretical model for critical behavior assumes that the LLT curve is
a straight line as a function of pressure or temperature. While the precise location
of the LLT curve is somewhat uncertain, it is likely to be curved. Fuentevilla and
Anisimov [6] have made an attempt to incorporate such a curvature by adding a
quadratic pressure term to the expression (10) for the ordering field. However, it is
not yet clear how the expansions (10)–(12) for the scaling fields can be generalized
to include higher-order contributions from the physical fields in a thermodynami-
cally consistent way. Another possibility for extending the range of validity of the
theoretical model may be to account for a crossover from Ising-like fluctuation-
induced critical behavior asymptotically close to the liquid–liquid critical point to
classical mean-field behavior farther away from the critical point, as has been done
in the representation of the thermodynamic properties of H2O in a wide range of
temperatures and densities around its vapor–liquid critical point [64] and has also
been suggested by Kiselev [4,5].

The existence of a liquid–liquid critical point is not the only possible explana-
tion for the anomalous behavior of the thermodynamic properties of supercooled
water. Scenarios for a singularity-free or critical-point-free interpretation have been
proposed [65–67]. Another suggestion is that response functions like the compress-
ibility do not diverge at a single temperature corresponding to a critical temperature
but at a range of pressure dependent temperatures Ts(P) corresponding to a spinodal
instability [18,68,69]. Most recently, the discussion on the nature of the anomalies
observed in supercooled water has received an additional impetus after Limmer and
Chandler reported new simulation results [8] for two atomistic models of water,
mW [70] and mST2 [71]. They found only a single liquid state in the supercooled
region and excluded the possibility of the liquid-critical point for the models stud-
ied. It would be important to compare the anomalies predicted by the models with
those exhibited by real water. The final conclusion on the existence of the liquid–
liquid critical point in water should be based on the ability to quantitatively describe
the experimental data.

The information provided in this report shows that a critical-point parametric
equation of state describes the available thermodynamic data on supercritical water
within experimental accuracy, thus establishing a benchmark for any further devel-
opments in this area.
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Appendix A Linear-model parametric equations

The formulas for the linear model are from Behnejad et al. [49].*

The r and θ coordinates are related to h1 and h2 by

h1 = arβ+γ
θ(1−θ

2), (26)

h2 = r(1−b2
θ

2), (27)

with γ = 2−α−2β and

b2 =
γ−2β

γ(1−2β )
. (28)

The scaling densities are given by

φ1 = k rβ
θ (29)

φ2 = ak r1−αs(θ), (30)

with

s(θ) = L0(s0 + s2θ
2), (31)

L0 = 1/[2b4(1−α)α], (32)

s0 = (γ−2β )−b2
αγ, (33)

s2 = (α−1)(γ−2β )b2. (34)

The scaling susceptibilities are given by

χ1 =
k
a

r−γq1(θ), (35)

χ12 = k rβ−1q12(θ), (36)

χ2 = ak r−αq2(θ), (37)

* In Behnejad et al. [49], the formula corresponding to our Eq. (40) erroneously does not contain the
factor L0.
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with

q1(θ) = (1−b2
θ

2 +2βb2
θ

2)/q0(θ), (38)

q12(θ) = θ [−γ +(γ−2β )θ 2]/q0(θ), (39)

q2(θ) = [(1−α)(1−3θ
2)s(θ)− (β + γ)2s2L0θ

2(1−θ
2)]/q0(θ), (40)

q0(θ) = (1−3θ
2)(1−b2

θ
2)+2b2(β + γ)θ 2(1−θ

2). (41)
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